Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
G3 (Bethesda) ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626295

ABSTRACT

The mosquito Aedes aegypti is the primary vector of many human arboviruses such as dengue, yellow fever, chikungunya and Zika, which affect millions of people world-wide. Population genetics studies on this mosquito have been important in understanding its invasion pathways and success as a vector of human disease. The Axiom aegypti1 SNP chip was developed from a sample of geographically diverse Ae. aegypti populations to facilitate genomic studies on this species. We evaluate the utility of the Axiom aegypti1 SNP chip for population genetics and compare it with a low-depth shot-gun sequencing approach using mosquitoes from the native (Africa) and invasive range (outside Africa). These analyses indicate that results from the SNP chip are highly reproducible and have a higher sensitivity to capture alternative alleles than a low-coverage whole-genome sequencing approach. Although the SNP chip suffers from ascertainment bias, results from population structure, ancestry, demographic and phylogenetic analyses using the SNP chip were congruent with those derived from low coverage whole genome sequencing, and consistent with previous reports on Africa and outside Africa populations using microsatellites. More importantly, we identified a subset of SNPs that can be reliably used to generate merged databases, opening the door to combined analyses. We conclude that the Axiom aegypti1 SNP chip is a convenient, more accurate, low-cost alternative to low-depth whole genome sequencing for population genetic studies of Ae. aegypti that do not rely on full allelic frequency spectra. Whole genome sequencing and SNP chip data can be easily merged, extending the usefulness of both approaches.

2.
An Acad Bras Cienc ; 95(4): e20200558, 2023.
Article in English | MEDLINE | ID: mdl-38055608

ABSTRACT

Iridovirus in Culex pipiens was reported for the first time in 2012. Later studies of horizontal transmission were performed, in which an interaction with the parasite Strelkovimermis spiculatus acting as viral vector was recognized. In the present study, we observed aspects of the pathology produced by an invertebrate iridescent virus in laboratory infected immature Cx. pipiens as well as in infected immature Cx. pipiens in the field. In the laboratory infected larvae, the infection and mortality were asynchronous. Signs of infection in larvae exposed to the virus were observed between the second and the fourth days post-exposure in 99% of the cases, while the highest daily record of visible infected larvae (52%) was observed on the third day post exposure. Moreover, 79% of confirmed virus infected larvae died in the first 10 days after exposure. The Median Lethal Time was eight days. Several tissues were found to be infected and the common sites of replication were the fat body, epidermis and epithelial derivatives, such as the imaginal discs and the tracheal epithelium. Moreover, infection in the salivary glands, gastric ceca and posterior gut have not been previously documented on other mosquito iridescent viruses.


Subject(s)
Culex , Culicidae , Iridovirus , Animals , Mosquito Vectors , Culex/parasitology , Larva
4.
Parasit Vectors ; 16(1): 222, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415215

ABSTRACT

BACKGROUND: The mosquito Aedes aegypti is an urban vector of dengue and other arboviruses. During epidemics of these viruses, pyrethroid insecticides are used for the control of adult mosquitoes. The worldwide resistance of Ae. aegypti to these insecticides is a cause of failure of vector control campaigns. The primary target of pyrethroids is the voltage-gated sodium channel. Point mutations in the gene coding for this channel, called knockdown resistance (kdr) mutations, are associated with pyrethroid resistance. Two kdr mutations, V1016I and F1534C, have increased in frequency in natural populations of Ae. aegypti in the Americas during the last decade. Their association with pyrethroid resistance has been largely demonstrated in field populations throughout the Americas, and in in vitro assays. Diagnostics for kdr polymorphism allow early detection of the spread of insecticide resistance, which is critical for timely decisions on vector management. Given the importance of resistance management, high-throughput methods for kdr genotyping are valuable tools as they can be used for resistance monitoring programs. These methods should be cost-effective, to allow regional-scale surveys. Despite the extensive presence of Ae. aegypti and incidence of dengue in Argentina, the presence, abundance, and distribution of kdr mutations in populations of this mosquito have yet to be reported for the country. METHODS: Aedes aegypti samples were collected as immature stages or adults from Buenos Aires Metropolitan Area and northern localities of Tartagal (Salta Province) and Calilegua (Jujuy Province). Immature stages were maintained in the laboratory until they developed into adults. A high-resolution melting assay, based on an analysis of melting temperatures, was developed for the simultaneous genotyping of V1016I and F1534C kdr mutations. We used this method to infer the presence and frequencies of kdr alleles in 11 wild populations from Argentina. RESULTS: We demonstrated the presence of kdr mutations in Ae. aegypti in Argentina in regions where this species is under different selection pressures due to the use of pyrethroids. The populations under analysis are located in geographically distant regions of the species' distribution in Argentina: the northern provinces of Salta and Jujuy and the Buenos Aires Metropolitan Area. Higher frequencies of resistant-associated alleles were detected in the northern region. We report a multiplex high-throughput assay based on a high-resolution melting polymerase chain reaction method for the simultaneous genotyping of V1016I and F1534C kdr mutations. This assay was shown to be cost-effective, and thus provides an interesting molecular tool for kdr genotyping in A. aegypti control campaigns. CONCLUSIONS: We report, to the best of our knowledge for the first time, the presence of kdr mutations in populations of Ae. aegypti from geographically distant locations of Argentina that differ with respect to their epidemiological situation and history of mosquito control. We have developed a high-throughput method for the genotyping of kdr mutations in Ae. aegypti from the Americas. Given its affordability and short running time, this method can be used in control campaigns to monitor the presence and spread of kdr alleles. The information provided here is relevant for the rational design of control strategies in the context of integrated vector management.


Subject(s)
Aedes , Dengue , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Aedes/genetics , Argentina , Mosquito Vectors/genetics , Mutation , Insecticide Resistance/genetics , Polymerase Chain Reaction
5.
J Med Entomol ; 59(5): 1766-1777, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35820022

ABSTRACT

The mosquito-borne yellow fever virus (YFV) is the cause of a zoonotic disease, with both sylvatic and urban cycles. Some mosquito species have been associated directly with transmission of the virus in South America, although the importance given to each species varies depending on the bibliography, geographical location, or year of publication. For Argentina, few publications have assessed the involvement of mosquito species, especially those included in the sylvatic cycle. Therefore, the goal of our paper was to gather all the information available in South America and categorize all mosquito species potentially involved in the YFV transmission cycle in Argentina according to incriminating vector criteria. Based on three main characteristics ('Hosts', 'Mosquito vector', and 'YF outbreak'), we generated scales of importance by species, one exclusively for Argentina and another for all of South America, Sabethes albiprivus Theobald, 1903 was the most important species in Argentina; whereas the most important species in South America were Haemagogus janthinomys Dyar 1921, Hg. leucocelaenus Dyar and Shannon, 1924, and Sa. chloropterus Von Humboldt, 1819. Our review highlights the lack of research that evaluates the importance of these species for YFV transmission in Argentina, while serving as a starting point to establish priorities for research on the bionomics and vector status of these species.


Subject(s)
Culicidae , Yellow Fever , Animals , Argentina , Brazil , Mosquito Vectors , Yellow fever virus
6.
J Med Entomol ; 59(4): 1211-1216, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35674704

ABSTRACT

Bluetongue virus (BTV) causes a viral, non-contagious disease that mainly affects sheep, cattle, and wild and farmed ruminants causing damage to these animals and significant economic losses. Culicoides insignis Lutz, the major BTV vector in South America, is one of the most abundant species in Argentina and commonly associated with cattle farms. The morphological identification of Culicoides spp. is routinely carried out with the aid of morphological keys, which mainly refer to the wing patterns, sensillae of palpi, and antennal flagella. Molecular tools applied to taxonomy provide a rapid and efficient method of identification of vector species. An easy protocol for the extraction of total DNA from single midges is herein described, and a forward primer for rapid and reliably test detection by polymerase chain reaction of C. insignis is developed.


Subject(s)
Bluetongue virus , Bluetongue , Cattle Diseases , Ceratopogonidae , Sheep Diseases , Animals , Cattle , Insect Vectors , Polymerase Chain Reaction , Sheep
7.
J Med Entomol ; 58(4): 1762-1770, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33905516

ABSTRACT

Yellow fever is an endemic disease in America caused by an arbovirus that circulates in the sylvatic cycle between nonhuman primates and mosquitoes of the genera Sabethes Robineau-Desvoidy and Haemagogus Williston. The main goal of this work is to report the distribution patterns of these genera in Argentina through an updated database built from published records as well as from own sample collections. These genera are represented in Argentina by a total of 18 species distributed in 14 provinces and 10 ecoregions. The ecoregions with greatest biodiversity were Paranense Forest, Yungas, Campos and Malezales. This database will also allow generating distribution maps for these mosquito genera, and their respective species in Argentina, to establish areas with high probability of viral circulation that are an essential input for vector surveillance, as a tool for public health decision-makers.


Subject(s)
Culicidae , Mosquito Vectors , Animals , Argentina , Databases, Factual , Humans , Yellow Fever/transmission
8.
J Invertebr Pathol ; 173: 107383, 2020 06.
Article in English | MEDLINE | ID: mdl-32298695

ABSTRACT

Vector control is the most effective method to prevent transmission of Chagas disease. Control is mostly made through chemical insecticides although they have negative impact on wild pollinators, such as bees. Reducing pesticide use through biological alternatives could minimize the damage to these beneficial insects. Triatoma virus (TrV) is a pathogen able to kill triatomines and thus a valid candidate to be used as biological control agent. In this study we evaluate the capacity of TrV to infect an important beneficial insect (Apis mellifera) as well as a plague insect (Aedes aegypti). Results indicate that TrV does not infect the bees or mosquitoes tested in this study. The possible specificity of TrV for kissing bugs reinforces the possible use of TrV as a biological control agent for triatomines.


Subject(s)
Aedes/virology , Bees/virology , Dicistroviridae/physiology , Host Specificity , Aedes/growth & development , Animals , Female , Larva/growth & development , Larva/virology , Pest Control, Biological
9.
PLoS Negl Trop Dis ; 13(6): e0007433, 2019 06.
Article in English | MEDLINE | ID: mdl-31188869

ABSTRACT

The importance of Zika virus (ZIKV) has increased noticeably since the outbreak in the Americas in 2015, when the illness was associated with congenital disorders. Although there is evidence of sexual transmission of the virus, the mosquito Aedes aegypti is believed to be the main vector for transmission to humans. This species of mosquito has not only been found naturally infected with ZIKV, but also has been the subject of study in many vector competence assays that employ different strains of ZIKV around the world. In Argentina, the first case was reported in February 2016 and a total of 278 autochthonous cases have since been confirmed, however, ZIKV virus has not been isolated from any mosquito species yet in Argentina. In order to elucidate if Argentinian Ae. aegypti populations could be a possible vector of ZIKV, we conducted vector competence studies that involved a local strain of ZIKV from Chaco province, and a Venezuelan strain obtained from an imported case. For this purpose, Ae. aegypti adults from the temperate area of Argentina (Buenos Aires province) were fed with infected blood. Body, legs and saliva were harvested and tested by plaque titration on plates of Vero cells for ZIKV at 7, 11 and 14 days post infection (DPI) in order to calculate infection, transmission, and dissemination rates, respectively. Both strains were able to infect mosquitoes at all DPIs, whereas dissemination and transmission were observed at all DPIs for the Argentinian strain but only at 14 DPI for the Venezuelan strain. This study proves the ability of Ae. aegypti mosquitoes from Argentina to become infected with two different strains of ZIKV, both belonging to the Asian lineage, and that the virus can disseminate to the legs and salivary glands.


Subject(s)
Aedes/virology , Mosquito Vectors/virology , Zika Virus/growth & development , Animal Structures/virology , Animals , Argentina , Female , Saliva/virology , Viral Load
10.
Am J Trop Med Hyg ; 99(2): 417-424, 2018 08.
Article in English | MEDLINE | ID: mdl-29869610

ABSTRACT

Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus-population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.


Subject(s)
Aedes/genetics , Aedes/virology , Arbovirus Infections/transmission , Arboviruses/physiology , Temperature , Animals , Arbovirus Infections/epidemiology , Argentina/epidemiology , Chikungunya Fever/epidemiology , Chikungunya virus/physiology , Dengue/epidemiology , Dengue Virus/physiology , Disease Outbreaks , Female , Humans , Mosquito Vectors/genetics , Mosquito Vectors/virology , Saliva/virology
11.
J Med Entomol ; 55(5): 1105-1112, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-29659944

ABSTRACT

Aedes aegypti (L.) (Diptera: Culicidae) is a vector of many medically significant viruses in the Americas, including dengue virus, chikungunya virus, and Zika virus. Traits such as longevity, fecundity, and feeding behavior contribute to the ability of Ae. aegypti to serve as a vector of these pathogens. Both local environmental factors and population genetics could contribute to variability in these traits. We performed a comparative study of Ae. aegypti populations from four geographically and environmentally distinct collection sites in Argentina in which the cohorts from each population were held at temperature values simulating a daily cycle, with an average of 25°C in order to identify the influence of population on life-history traits. In addition, we performed the study of the same populations held at a daily temperature cycle similar to that of the surveyed areas. According to the results, Aguaray is the most outstanding population, showing features that are important to achieve high fitness. Whereas La Plata gathers features consistent with low fitness. Iguazu was outstanding in blood-feeding rate while Posadas's population showed intermediate values. Our results also demonstrate that climate change could differentially affect unique populations, and that these differences have implications for the capacity for Ae. aegypti to act as vectors for medically important arboviruses.


Subject(s)
Adaptation, Biological , Aedes , Life History Traits , Temperature , Animals , Argentina , Female , Reproduction , Sex Ratio
12.
Ciudad Autónoma de Buenos Aires; Argentina. Ministerio de Salud de la Nación. Dirección de Investigación en Salud; 2018. 1-25 p. tab, graf.
Non-conventional in Spanish | ARGMSAL, BINACIS | ID: biblio-1391501

ABSTRACT

INTRODUCCIÓN Las enfermedades transmitidas por insectos vectores, como el dengue y la enfermedad de Chagas, registran cada año miles de defunciones. El control de las poblaciones de los vectores es la principal herramienta para prevenir estas enfermedades. En este marco, existen protocolos para la evaluación de insecticidas en terreno que no se adaptan a las diversas realidades sociales, climáticas y ambientales que presenta nuestro país. OBJETIVO Se proponen dos objetivos; 1) Diseñar protocolos de evaluación de insecticidas en terreno para el control de los vectores del dengue y la enfermedad de Chagas con adaptaciones a la heterogeneidad de la región; y 2) evaluar la eficacia en terreno de un insecticida con efecto larvicida y adulticida para el control de las poblaciones de Ae. aegypti. METODOS Se diseñaron protocolos para la evaluación de insecticidas contra las poblaciones de Ae. aegypti y T. infestans. Además, se evaluó el efecto larvicida y adulticida de un producto contra Ae. aegypti en Santo Tomé (Corrientes). Para ello se estimó la supervivencia de adultos, mortalidad de estadios preimaginales, porcentaje de emergencia e indicadores entomológicos de la población local de forma semanal en viviendas de dos áreas de la ciudad. En una se aplicó el producto mediante máquina UBV y la otra fue considerada como control. RESULTADOS Se generaron dos protocolos para la evaluación de insecticidas en terreno; uno para Ae. aegypti y otro para T. infestans. En la evaluación sobre Ae. aegypti, se observó un incremento del 24,06% de mortalidad total de los estados preimaginales y una disminución del 29,32% de la emergencia de los adultos. Solo la cantidad de adultos y el índice de Breteau de los índices entomológicos presentaron una merma en las semanas posteriores al tratamiento. DISCUSIÓN El producto evaluado mostró una elevada eficacia. Sin embargo un incremento de los índices en la semanas subsiguientes al tratamiento sugieren la implementación de técnicas de control adicionales en el tiempo


Subject(s)
Vector Control of Diseases
13.
Mol Ecol ; 25(21): 5377-5395, 2016 11.
Article in English | MEDLINE | ID: mdl-27671732

ABSTRACT

Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.


Subject(s)
Aedes/genetics , Genetic Variation , Genetics, Population , Animals , Asia , Kenya , Microsatellite Repeats , Senegal
14.
J Invertebr Pathol ; 129: 40-4, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26031563

ABSTRACT

Little progress been made in elucidating the transmission pathway of the invertebrate iridescent virus (MIV). It has been proposed that the MIV has no active means to enter the mosquito larva. We have previously found that the presence of the mermithid nematode Strelkovimermis spiculatus is associated with MIV infection in Culex pipiens under field conditions. In the present study, we evaluated the transmission of MIV to C. pipiens larvae mediated by S. spiculatus and several factors involved in this pathway (mosquito instars, nematode:mosquito larva ratio, amount of viral inoculum). Our results indicate that S. spiculatus functions as an MIV vector to C. pipiens larvae and seems to be an important pathway of virus entry into this system. Moreover, TEM images of S. spiculatus exposed to the viral suspension showed no infections inside the nematode but showed that viral particles are carried over the cuticle of this mermithid. This explains the correspondence between MIV infection and the factors that affect the parasitism of S. spiculatus in C. pipiens larvae.


Subject(s)
Culex/virology , Disease Vectors , Iridoviridae/pathogenicity , Mermithoidea/virology , Animals , Microscopy, Electron, Transmission
15.
J Med Entomol ; 51(1): 189-99, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24605469

ABSTRACT

The endosymbiotic bacteria Wolbachia pipientis Hertig infects a wide variety of insect species and can increase viral resistance in its host. Wolbachia naturally infects Culex quinquefasciatus Say and Culex pipiens L. mosquitoes, both vectors of West Nile virus (WNV). We recently demonstrated that Wolbachia infection of Cx. quinquefasciatus laboratory strain Ben95 increases host resistance to WNV infection, reducing vector competence. This observation raised the possibility that Wolbachia could impact vector competence in other populations of Cx. quinquefasciatus or Cx. pipiens. To investigate this possibility, Wolbachia densities were measured in Ben95 Cx. quinquefasciatus and compared with densities in a newly established colony of Cx. quinquefasciatus, and in field-collected and colonized Cx. pipiens. Wolbachia densities in somatic tissues of Ben95 Cx. quinquefasciatus were significantly higher than densities in the other mosquito populations tested. There was also no significant spatiotemporal variation in Wolbachia density in the field-collected Cx. pipiens, although significant familial differences were observed. Correlating Wolbachia densities and vector competence in individual colonized Cx. pipiens indicated that the densities of somatic Wolbachia observed in the mosquitoes other than Ben95 Cx. quinquefasciatus were too low to inhibit WNV infection and reduce vector competence. These results suggest that the high Wolbachia densities capable of inducing resistance to WNV in Ben95 Cx. quinquefasciatus are not a general characteristic of Cx. quinquefasciatus or Cx. pipiens mosquitoes and that the impact of Wolbachia on vector competence in field populations of Cx. quinquefasciatus and Cx. pipiens, if any, is likely to be limited to specific populations.


Subject(s)
Culex/microbiology , Insect Vectors/microbiology , West Nile virus , Wolbachia/physiology , Animals , Culex/immunology , Female , Insect Vectors/immunology
16.
Mem Inst Oswaldo Cruz ; 98(5): 659-63, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12973534

ABSTRACT

Monthly oviposition activity and the seasonal density pattern of Aedes aegypti were studied using larvitraps and ovitraps during a research carried out by the Public Health Ministry of Salta Province, in Tartagal, Aguaray and Salvador Mazza cities, in subtropical Argentina. The A. aegypti population was active in both dry and wet seasons with a peak in March, accordant with the heaviest rainfall. From May to November, the immature population level remained low, but increased in December. Ae. aegypti oviposition activity increased during the fall and summer, when the relative humidity was 60% or higher. Eggs were found in large numbers of ovitraps during all seasons but few eggs were observed in each one during winter. The occurrence and the number of eggs laid were variable when both seasons and cities were compared. The reduction of the population during the winter months was related to the low in the relative humidity of the atmosphere. Significant differences were detected between oviposition occurrences in Tartagal and Aguaray and Salvador Mazza cities, but no differences in the number of eggs were observed. Two factors characterize the seasonal distribution pattern of Ae. aegypti in subtropical Argentina, the absence of a break during winter and an oviposition activity concomitant of the high relative humidity of the atmosphere.


Subject(s)
Aedes/anatomy & histology , Behavior, Animal/physiology , Oviposition/physiology , Seasons , Aedes/physiology , Animals , Argentina , Female , Male , Population Density
17.
Mem. Inst. Oswaldo Cruz ; 98(5): 659-663, July 2003. tab, graf
Article in English | LILACS | ID: lil-344286

ABSTRACT

Monthly oviposition activity and the seasonal density pattern of Aedes aegypti were studied using larvitraps and ovitraps during a research carried out by the Public Health Ministry of Salta Province, in Tartagal, Aguaray and Salvador Mazza cities, in subtropical Argentina. The A. aegypti population was active in both dry and wet seasons with a peak in March, accordant with the heaviest rainfall. From May to November, the immature population level remained low, but increased in December. Ae. aegypti oviposition activity increased during the fall and summer, when the relative humidity was 60 percent or higher. Eggs were found in large numbers of ovitraps during all seasons but few eggs were observed in each one during winter. The occurrence and the number of eggs laid were variable when both seasons and cities were compared. The reduction of the population during the winter months was related to the low in the relative humidity of the atmosphere. Significant differences were detected between oviposition occurrences in Tartagal and Aguaray and Salvador Mazza cities, but no differences in the number of eggs were observed. Two factors characterize the seasonal distribution pattern of Ae. aegypti in subtropical Argentina, the absence of a break during winter and an oviposition activity concomitant of the high relative humidity of the atmosphere


Subject(s)
Animals , Male , Female , Aedes , Behavior, Animal , Oviposition , Seasons , Aedes , Argentina
18.
Rev. biol. trop ; 48(2/3): 623-8, jun.-set. 2000. ilus
Article in Spanish | LILACS | ID: lil-297342

ABSTRACT

Aedes albifasciatus, a floodwater mosquito, is widely distributed in freshwater habitats in Argentina. At high population densities it is an important pest in urban areas. A two year study was conducted in a natural population of A. albifasciatus around La Plata area, Buenos Aires province, Argentina. The breeding site was weekly sampled from May, 1996 to April, 1998. Immature stages of A. albifasciatus were collected with a standard 300 ml dipper. Each sample unit consisted of 100 dipper. Highest densities of mosquito larvae occurred when the breeding site was flooded among 90 and 100 porcent of its capacity after remaining dry for severa days or weeks. The larvae required between six and eight days to become adult in summer (temperature mean 24.6§C in January and 21.3§C in Febrary). In autumn-winter, 43 days (temperature mean 10.6§C) and in spring 22 days (temperature mean 15.5§C). Key words: Neotropical Culicidae, Aedes albifasciatus, mosquito larvae, Argentina


Subject(s)
Animals , Aedes , Culicidae , Floods , Insect Vectors , Pest Control, Biological , Argentina
SELECTION OF CITATIONS
SEARCH DETAIL
...